
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

BBj® 9.0 showcases the new Web Services Configuration tool
in Enterprise Manager (EM). A few modifications to your old
code, a little configuration in EM, and you can offer up your
legacy program as a Web Service that employees can use
anywhere they have installed a client. To demonstrate just how
easy it is to make a Web Service, run the "Chile Company
Web Service" demo. This article uses the "Chile Company
Web Service Demo" to demonstrate how one can create one's
own web service.

	

Running the Chile Company Web Service Demo
1. Verify that BBj Services is running on a Java 6 JDK; we 	
 recommend that you also run the Thin Client Proxy Server 	
 on a Java 6 JDK.

2. Run the LaunchDock
 • On Windows, select Start | All Programs | BASIS 	
 | BBj | Demos | LaunchDock
 • On Mac in the Finder, select Macintosh HD | 		
 Applications | BASIS-LaunchDock
 • On UNIX/Linux distributions in a shell session, 		
 change to the <BBj installation>/bin directory
 and type ./LaunchDock

3. Choose the Language/Interpreter folder. Click the Web 	
 Service demo icon that appears as a blue globe with two 	
 computers connected with a lightening bolt in Figure 1. > >

1

Language/Interpreter

ave you ever used an application that receives stock
quotes or the weather forecast or current news
headlines? If so, it is likely you have encountered a
Web Service.

A Web Service is a server-
side program that offers
up an API in a document
called a WSDL (Web
Service Definition Language,
pronounced: whiz'-dull) that
a variety of client programs
can use. Web Services
allow a company to share
essential information with a
client application via HTTP
without the need for a VPN
or any other kind of constant
connection to the company
offering the Web Service. It
is possible to create a sales
server program that runs on
a company’s Web server and
connect your sales force with
robust clients on their laptops.

One example is Federal
Express's Web Service that
offers up an API for various
companies to integrate
into their software to track
shipments. To see this in

action, run the "CUI Package Tracking" and "GUI Package
Tracking" demos. Like Federal Express, more and more
companies are offering Web Services as a way to provide
interactive "live" information to a variety of applications.

 H

From Legacy to Enterprise
With BBj Web Services
Old is new again!

By Shaun Haney
Quality Assurance
Engineer

To continue with this article, download and install the
demos from the Optional File section in the BBj download
at www.basis.com/products/bbj/download.html. Then select
BBj | Demos | LaunchDock from the BASIS folder to run
the demos as noted in the instructions below.

http://www.basis.com/announcements/mc-2009-002-bbj-barista90.pdf
http://en.wikipedia.org/wiki/Web_service
https://www.basis.com/products/bbj/download.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

The first window that
appears displays a tab set
with the "Place Order for
Customer" tab selected.
The grid inside the tab,
shown in Figure 2,
contains inventory data
from the Chile Company
Web Service.

In the QUANTITY column,
specify the quantity of
each item to be ordered.
Select the customer
from the customer
combobox, then press
[Place Order] to submit.
A confirmation dialog
appears (see Figure
3), listing information such as the order
number that the Chile Company Ordering
System assigned. Press [OK] and the dialog
disappears. The demo client now queries
the Web Service to update its inventory and
invoice list.

Next, click the Invoices tab in the main
window (Figure 4); the order you just
placed lists a corresponding invoice.

Exploring the CCOS Web Service
The "Chile Company Web Service" demo
shows our client consuming a Web Service
written in BBj. What you have seen so
far is the client program that handles the
user interface. The brains of the operation,
however, are in the service that runs on BBj
Services' internal Jetty Web Server. BASIS
conveniently included the Chile Company
Ordering System (CCOS) Web Service
configuration inside the Enterprise Manager
(EM). By examining the configuration of the
CCOS Web Service, you will see how easily
you can set up your own Web Service.

The Web Service Program
To begin, find the "Chile Company
Web Service" demo directory at <BBj
Installation>/demos/webservices.
The ServerSide_Legacy.src program
file contains all the server-side code for
the CCOS Web Service. This file is not > >

2

Language/Interpreter

Figure 2. The order entry screen

Figure 1. The "ChileCompany Web Service" demo in the BASIS LaunchDock

Figure 4. Invoice listing showing the most recent purchases

Figure 3. The order confirmation dialog

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 3

Language/Interpreter

a stand-alone program, but rather a library of BBx®-style
subroutines shown in Figure 5.

The Web Service ignores any code in the file that is not
contained within a subroutine. Each subroutine consists of a
label and an ENTER statement with the list of parameters that
each subroutine takes. Additionally, the Service treats one of
these parameters as the return value for the subroutine and all
other parameters as pass-by-value parameters.

Because the server-side program consists of traditional BBx-
style subroutines and does not contain any object-based code or
Web Services artifacts, it is possible to transition your old code
to run in a BBj Web Service and still continue to use it in its prior
capacity.

The CCOS Web Service consists of seven subroutines:

1. login authenticates users of CCOS and allows anyone into
 the system and is not ever actually called in this demo,
 however, developers could easily add code to the routine
 to authenticate their employees, making the system more
 secure

2. getOrders retrieves a list of customer orders from the
 ChileCompany database, then appends these orders to 	 	
 a string, separated by an easily identifiable separator string
 of our choice: "<carriage return>+[*]+<carriage return>"

3. getInStockItems retrieves a list of all the items the Chile
 Company sells, including their quantity and warehouse 	
 location, and appends the results to a string with the separator 	
 string between each entry

Figure 5. A program listing of the subroutines in ServerSide_Legacy.src

4. getOrderDetail retrieves all the line items for a given order 	
 number, then appends them along with the separator string

5. getOrderHeader retrieves the order header for a given order 	
 number

6. getCustomerList retrieves the list of customers in the 	 	
 ChileCompany database

7. placeOrder accepts an order for a given customer and
 list of items, and updates several tables in the ChileCompany
 database with information from the order

The subroutines in the CCOS server-side code primarily access
the ChileCompany database with preset queries.

Exploring the CCOS Web Service Configuration
in Enterprise Manager
The Web Service is already configured in the EM. To see this
configuration, follow these steps:

 1. Launch EM.
 • On Windows, select Start | All Programs | BASIS | 		
 BBj | Enterprise Manager
 • On Mac in Finder, select Macintosh HD | Applications | 	
 BASIS-Enterprise_Manager

The Web Service expects the list of items and
quantities to be a string with each item in the order
separated by the separator string. For simplicity, we
assume the customer has already paid and so we
will update the customer’s information with the total
amount of the order, etc. We also update the number
of items in stock and the list of invoices as well.

> >

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

 • On UNIX/Linux distributions, type the
 following at the shell prompt:
 <BBj Installation>/bin/enterprisemanager

2. Log in to EM (User Name: admin Password: admin123 	
 unless the person who installed BBj changed the 	 	
 username and password)

3. Select "Web Service Configuration" from the left pane as 	
 shown in Figure 6.

4. Select the CCOS Service and click [Edit Service] to 	
 display a list of methods (see Figure 7).

Figure 7 fully defines the configuration for the CCOS Web
Service, including:

 • The name of the service becomes read-only once the 	
 service after its creation.

 • The working directory is the directory where the 	 	
 program files for the Web Service will reside.

In this case, we left the working directory blank because
the directory containing ServerSide_Legacy.src is already
in the PREFIX defined in config.min. We could have also
specified <BBj Installation>/demos/webservices as
our working directory. For a given Web Service, you can
have any number of program files with callable subroutines.
Those program files need to reside in the working directory
specified or in the PREFIX defined in the configuration file.

 • The "Config File" field takes the location of the Web 	
 Services' configuration file.

In this case, we specified config.min located in <BBj
Installation>/cfg. Any relative path specified here will
be relative to <BBj Installation>/cfg. The path must
otherwise be an absolute path.

 • The "Namespace" field specifies the namespace for
 your service; the package name for the client's service 	
 and port classes will be the namespace name in all
 lowercase. If this field is left blank, the package name 	
 for the service and port classes will be "example".

 • A list of methods for the CCOS Web Service appears 	
 in the listbox at the bottom of this window. For easy 	
 correlation, each method has the same name as a 	 	
 subroutine in ServerSide_Legacy.src.Though it is
 good practice to name the methods this way, it is not 	
 required.

To see how the methods correlate to the subroutines in
ServerSide_Legacy.src, select the "placeOrder" method
and click [Edit Method]. The result appears in Figure 8
where the configuration for the subroutine "placeOrder" is
shown alongside the subroutine header for placeOrder in
ServerSide_Legacy.src.

The "Edit Method" window in Figure 8 is where the actual
method correlates to its subroutine. > >

4

Language/Interpreter

Figure 6. A listing of Web Services defined in EM

Figure 7. CCOS defined in EM

 Figure 8. The correlation of a BBx/BBj subroutine to a Web Service method

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9

Consuming the Web Service
BASIS wrote the "Chile Company Web Service" demo client
in BBj with some help from tools available in Java. However,
the clients can be written in any language that supports Web
Services, such as Microsoft’s .NET platform (C# and Visual
Basic), Perl, and Java. To write a Web Service client, generate
client stubs, which are Java libraries for accessing a particular
Web Service. The client programs can use these stubs to
access the Web Service.

Generating client stubs is really easy using the tools available
in Java 6. Locate Java’s wsimport tool in the bin directory
of your JDK 6 install. To generate client stubs for the "Chile
Company Web Service" demo, we switched to a directory in
which we wanted to generate a couple of Java packages with
Java classes, and then entered the following at the command/
shell prompt:

 wsimport http://localhost:8888/webservice/ 	 	

 CCOS?WSDL

This command uses the WSDL document to create two Java
packages, "ccos" and "bbjgenerated." BASIS generated
two packages found in the <BBj installation>/lib/
ChileCompanyWebService.jar JAR file with this command.
The "ccos" package contains two classes known as the
service and port classes. In the case of CCOS, the service
class is called CCOSServiceService and the port class is
called CCOS. The bbjgenerated directory contains the classes
that correspond to the methods that BASIS configured in the
EM. These are message classes the port class uses, but not
directly by the client.

After generating the client stubs, add the Java classes to
the BBjServices classpath. In our case, the BBjIndex.jar
already includes the ChileCompanyWebService.jar. Other
than making use of the service and port classes, the "Chile
Company Web Service" demo client is a typical BBj program.
Access the Web Service in the client code in these four easy
steps:

1. Reference the generated classes. The USE statements 	 	
 allow the program to access generated classes in the jar
 located in the classpath.

2. Instantiate the service class. The service class is one 	 	
 of two classes in the package and has the name
 <Service Name>+"Service".

3. Obtain the port from the service. The port is the other 	 	
 class that is included in the ccos package and has the
 same name as the service. Rather than instantiating this 	 	
 class directly, call the get<service name>ServicePort()
 method on your service object.

 • The "Name" field in this window is read-only after the 	 	
 method has been created.

 • The "Call" field takes a subroutine that the Web Service 	
 will call in a similar fashion to the CALL verb in BBj. The format 	
 of the subroutine is "<BBj program name>::<label>". The 	 	
 program name should be just the base name of the BBj/	 	
 BBx program without a preceding path. The label name 	 	
 should correspond to a subroutine’s label in that program file.

 • The "Return Index" field is particularly important;
 subroutines are required to always return a value and one
 of the parameters must act as the return value.

 • The listbox at the bottom of the window shows the five 	 	
 parameters: customerName$, quantityStr$, itemNumStr$,
 warehouseStr$, and orderNum%. While customerName$,
 quantityStr$, itemNumStr$, and warehouseStr$ are all of 	 	
 type BBjString, orderNum% is a BBjInt.

To add parameters to the listbox, press the [BBjString],
[BBjNumber], and [BBjInt] buttons. While BBj Web Services
is a work in progress, BBj 9.0 supports these three types but
future releases will support more types. In the meantime, we
concatenated our results in the ServerSide_Legacy.src with
a separator string rather than using arrays since BBj Web
Services does not support arrays in BBj 9.0. The residual
textbox and [Custom] button are windows into the future of BBj
Web Services and are not currently supported.

The BBj Web Services server-side configuration is now complete.

Once all the Web Services methods correlate with each
subroutine in the ServerSide_Legacy.src file, we went back
to the first screen in Figure 6 and clicked [Publish Service].
Now that the Service is available for consumption, the WSDL,
which is the document that tells a client what methods it can
call on the Web Service, is available at http://localhost:8888/
webservice/CCOS?wsdl. This WSDL is exactly what we
needed to consume the Web Service in a Web Services client.

> >

5

Language/Interpreter

As mentioned earlier, it is possible to configure a Web
Service to use subroutines from not just one, but
several program files. The only requirement is that
those program files be in your working directory or
PREFIX.

Due to these requirements, a subroutine that a Web
Service uses must always have at least one parameter.
The Web Service will return the parameter specified
in the Return Index field as the return value of the
method. Return Index is the zero-based position of
the parameter in the parameter list. For example,
placeOrder takes five parameters. The first parameter
has an index of 0, and the last parameter has an index
of 4. The method uses orderNum% as the return value.
Therefore, our Return Index field is set to 4.

If you already familiar with Web Services, you
may find it helpful to access the WSDL with a
reference to its corresponding xsd file at
http://localhost:8888/webservice/CCOS?WSDL=1
and the XSD file at
http://localhost:8888/webservice/CCOS?xsd=1.

http://localhost:8888/webservice/CCOS?wsdl
http://localhost:8888/webservice/CCOS?wsdl
http://localhost:8888/webservice/CCOS?WSDL=1
http://localhost:8888/webservice/CCOS?xsd=1

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 3 • 2 0 0 9 www.basis.com

 4. Call any of the methods defined in EM on the port object once you obtain the 	
 port object. Since placeOrder was defined in Figure 8 as taking four BBjStrings, 	
 you will need to pass four string values to the method. Configuration in EM defines 	
 this method as returning a BBjInteger, which the following statement assigns to 	
 orderNum%.

How it all Connects
You have come full circle seeing a BBj Web Services client in action and the server-
side code that the service invokes, and how the client Web Services program can
connect to the Web Service. The "Chile Company Web Service" demo showed that
when the user clicks the [Place Order] button, the demo invoked port!.placeOrder(),
sending a placeOrder message to the Web Service configured in EM. This resulted
in a CALL to the subroutine ServerSideLegacy.src::placeOrder upon receiving the
"placeOrder" message. Web Services then executed the subroutine and passed
back orderNum% as the return value. Inside the demo client’s code, orderNum% was
assigned to that return value.

Summary
So now, when you are looking at the current weather update on your day planner
application, you will know just how BBj provides a similar live data connection to
your sales force, inventory crew, customers, etc. BBj makes creating a Web Service
a breeze, saving days or even months of development time, otherwise needed to
distribute your current functionality over a network. Your users do not even need a LAN
or VPN connection to be connected to your company!

6

Language/Interpreter

