Language/Interpreter

From Legacy to Enterprise
With BBj Web Services

Old is new again!

ave you ever used an application that receives stock
quotes or the weather forecast or current news
headlines? If so, it is likely you have encountered a

Web Service.
Markets
U.S. closa in 2 hrs, 58 mins
DJlA 10,010.80
g139 4 0.81%
MNASDAQ 2,157.15
-19.17 # 0.88%
S&P 500 1,088.05
986 4 090%
10yr Mote 102.469
05312 & } 590
FTSE 100 5,243.40
38.14 0.72%
Mikkei 225 10,336.84
10033 & 0.98%
Hang Seng 22,384.96
184.50 & 0.83%
Euro (in USD 1.49
0.0067 ¥ 0.45%
Ye&n (per USD) 90.87
0234 025%
Gold (Oct 1,058.80
1.50 4 0.14%
Qil {(Mov 78.59
-1.02 4 1.28%

A Web Service is a server-
side program that offers

up an APl in a document
called a WSDL (Web
Service Definition Language,
pronounced: whiz'-dull) that
a variety of client programs
can use. Web Services

allow a company to share
essential information with a
client application via HTTP
without the need for a VPN
or any other kind of constant
connection to the company
offering the Web Service. It
is possible to create a sales
server program that runs on
a company’s Web server and
connect your sales force with

robust clients on their laptops.

One example is Federal
Express's Web Service that
offers up an API for various
companies to integrate

into their software to track
shipments. To see this in

action, run the "CUI Package Tracking" and "GUI Package
Tracking" demos. Like Federal Express, more and more
companies are offering Web Services as a way to provide
interactive "live" information to a variety of applications.

Engineer

By Shaun Haney
Quality Assurance

Albuguerque, N

=gt the 10 day for 5
o
Ajrport Delavs 66 F
Sooding Events Partly Cloudy
Folign Reports Fasals Like: 88°F
Humidity. 34%
Wind: S5W at 2 mph
The r
Weather S A @
Channel

weather.com Citigs for Foodigs

BBj® 9.0 showcases the new Web Services Configuration tool
in Enterprise Manager (EM). A few modifications to your old
code, a little configuration in EM, and you can offer up your
legacy program as a Web Service that employees can use
anywhere they have installed a client. To demonstrate just how
easy it is to make a Web Service, run the "Chile Company
Web Service" demo. This article uses the "Chile Company
Web Service Demo" to demonstrate how one can create one's
own Web Service.

To continue with this article, download and install the
demos from the Optional File section in the BBj download
at www.basis.com/products/bbj/download.html. Then select
BBj | Demos | LaunchDock from the BASIS folder to run
the demos as noted in the instructions below.

Running the Chile Company Web Service Demo

1. Verify that BBj Services is running on a Java 6 JDK; we
recommend that you also run the Thin Client Proxy Server
on a Java 6 JDK.

2. Run the LaunchDock

* On Windows, select Start | All Programs | BASIS
| BBj | Demos | LaunchDock

* On Mac in the Finder, select Macintosh HD |
Applications | BASIS-LaunchDock

* On UNIX/Linux distributions in a shell session,
change to the <BBj installation>/bin directory
and type ./LaunchDock

3. Choose the Language/Interpreter folder. Click the Web
Service demo icon that appears as a blue globe with two
computers connected with a lightening bolt in Figure 1.> >

n BASIS International Advantage ® Number 17 ¢ Volume 13 ¢ 2009

www.basis.com

http://www.basis.com/announcements/mc-2009-002-bbj-barista90.pdf
http://en.wikipedia.org/wiki/Web_service
https://www.basis.com/products/bbj/download.html

Language/Interpreter

agel/lnterpreter

Chile Compe
: ncnnnnﬁ#a i

The first window that
appears displays a tab set
with the "Place Order for
Customer" tab selected.
The grid inside the tab,
shown in Figure 2,

N —

Ertar datred quashty o each Bm 0w wish 10 ondet in the sl column. Soioll down 10 56 mois sema

L cusnnty 1REM_ DESCRIPRION waptioUsE il | are oo |
contains inventory data oeoea Prarag- g e i 0 ;
from the Chile Company | Jocon! {archs Pods. sl |Senwstenscn I 1

o & D000 i - Pode Lages ol W wah g 5

Web Service. I e :Ii;l:-'-l-l-'d .-“"'“.' m

-m:l Wl Coan Lissd Tl et Ll

| jooco0e Papia M aatenze 19
In thg QUANTITY_ column, ooiees Faia Bl 7 .
specify the quantity of on0nce e S Waitse 2 -
each item to be ordered. Place thia seder or. | Babdrabn, Dineny =
Select the customer e e

from the customer
combobox, then press Figure 2. The order entry screen
[Place Order] to submit.
A confirmation dialog

appears (see Figure | Your Order Has Been Placed

3), listing information such as the order | Gedes Datails

number that the Chile Company Ordering | Customer: Bukrake. Geageey L Fmciax

System assigned. Press [OK] and the dialog ' m:':,:: m 5.,::,'::. ;‘;fm a,:;: ﬁ:ﬂmﬂw
disappears. The demo client now queries _ -
the Web Service to update its inventory and Lt | s | DESCRFTION [ousenre| rece |
invoice list. : ﬁ ;f“m’f;"" f:io f‘:’:
Next, click the Invoices tab in the main

window (Figure 4); the order you just

placed lists a corresponding invoice.

Exploring the CCOS Web Service _ |
The "Chile Company Web Service" demo [
shows our client consuming a Web Service :
written in BBj. What you have seen so Figure 3. The order confirmation dialog

far is the client program that handles the
user interface. The brains of the operation,

however, are in the service that runs on BBj

Services' internal Jetty Web Server. BASIS

conveniently included the Chile Company

Ordering System (CCOS) Web Service frrrerer—

configuration |n.3|.de the Enterprlse_Manager casroun | onoen [oeeenes] sweero] warsaron | sawonson | Toma |

(EM). By examining the configuration of the [EEETT o it R0I0h [CewaPavalnen [Comumcrbmelnge |18 | -

CCOS Web Service, you will see how easily i hubens oS TS g UFS Rt Mot Dl Pogm fustnLarchwrnn 1185 | 1

you can set up your own Web Service. R e e e — e e et 1
Lord Bt [EMT1%08 (121750 (131780 (UPS Ml ey BeckpCbusBariom 500 |

The Web Service Program e e e e

To begin, find the "Chile Company e Py L e e e e Ry

Web Service" demo directory at <BBj ieason Lameres (GRG0 120800 (1208 |UPS Gerard Bathuiormers A Pk, 12878 |

Installation>/demos/webservices. mew-w 2:;:; (o, :;::;:':un mw gl

The Server‘S‘ide_Legacy.sr‘c program Bk, Desey lo0EtE (12080 [1M00A0 [Certal Pmcel Urion. |[Corctnce Avrm Unger lmion | -

file contains all the server-side code for

the CCOS Web Service. This file is not > > Figure 4. Invoice listing showing the most recent purchases

www.basis.com BASIS International Advantage ® Number 1 ¢ Volume 13 « 2009

Language/Interpreter

iy NetBewns I0€ 38 - Project

b te k]

file [View Propecs Buid Debug Vemioning Tool Windew Hlp
GCaBfFd X000 2¢C A0 B~k phonepoadazssald
[i Ll Hy Serverfids Legacy sre W b
B HemuBurion = e s | B =
= = ¥
) Habeda AR (w4 dden
W) Pranirae EEH =
0y Seports REM Subwoutine:
sl 3 SPROCR REH getInStockltams
-+ REM Parameters:
v D SQReqlwEspressors ErH Fraultf [owt): Al] the inwentory from the Chile Company database,
E i) SOLTierrsction RTH with cach stem separated by spliiChar§
B SLVewe REM Description:
B ey D REH Eetrieves a Tist of all imventory ftees from the Chile Conpany database,
- REM Method N
50 Sachet T omTUnic shons M get TnstockTtems() [
£ RoulChed: REW Return Valwer .
W) Spnnes TEH results
£ 03 Transistor REM —=--—--ecee-e
56 VesSemcs oetinStockTtems:
W WeblmedOnderng -
B3 WebBmeadanaty plithari=f0a%«" [~] +$0A%
B WebBrows
T WiehServeoslhenty REM Define the S0L Query
s ="zl ect itewm num, descriptionwarshouse_name , qty_on_hand from item,guantity warehos
B LD Workbendy +7 where {tem, {tem nue=quan®i by, 1tem_num and quant ity warehouse_ciumewarshaute , mareh
) XML 1} +" order by iUe_fn
B0 addondemodats
£ o £ " .. It s F : Tieat
5 chiedd REM Now generate and return the recult et back to the client application
- . gosub open_database
5 cuwsh sqlprep(sglChan}s0l s
i D ecammence sql exec{sqlChan}
Bl g
3 wehservices :-IFHIIL: {sglChan)
E ChentSade s resulti=resul ti+zpl i tChar§+ toh{sgiChan, =dane2)
ChartSaiy ot wend
3By ChentSdesec
B CrvCamerdhisCananay el 1ch
B DreCanyonChieCmgarBan et aeanCu)
B DrCamonthieC omparr e aacl®
Ty ServerSoe Legacy.sc
B WwebServices = PRI -l o S e 5 - - e i
- &) i REW Subvrout ine: -
n ¥ L 13
Priaey arm i o ciber teak e 1:1 [

Figure 5. A program listing of the subroutines in ServerS-ide_Legacy.src

a stand-alone program, but rather a library of BBx®-style 4. getOrderDetail retrieves all the line items for a given order
subroutines shown in Figure 5. number, then appends them along with the separator string
The Web Service ignores any code in the file that is not 5. getOrderHeader retrieves the order header for a given order
contained within a subroutine. Each subroutine consists of a number

label and an ENTER statement with the list of parameters that

each subroutine takes. Additionally, the Service treats one of 6. getCustomerList retrieves the list of customers in the

these parameters as the return value for the subroutine and all ChileCompany database

other parameters as pass-by-value parameters.
7. placeOrder accepts an order for a given customer and

Because the server-side program consists of traditional BBx- list of items, and updates several tables in the ChileCompany
style subroutines and does not contain any object-based code or database with information from the order
Web Services artifacts, it is possible to transition your old code The Web Service expects the list of items and
to run in a BBj Web Service and still continue to use it in its prior quantities to be a string with each item in the order
capacity. separated by the separator string. For simplicity, we
assume the customer has already paid and so we
The CCOS Web Service consists of seven subroutines: will update the customer’s information with the total
amount of the order, etc. We also update the number
1. Togin authenticates users of CCOS and allows anyone into of items in stock and the list of invoices as well.
the system and is not ever actually called in this demo,
however, developers could easily add code to the routine The subroutines in the CCOS server-side code primarily access
to authenticate their employees, making the system more the ChileCompany database with preset queries.
secure

Exploring the CCOS Web Service Configuration
2. getOrders retrieves a list of customer orders from the in Enterprise Manager
Ch1ileCompany database, then appends these orders to
a string, separated by an easily identifiable separator string
of our choice: "<carriage return>+[*]+<carriage return>"

The Web Service is already configured in the EM. To see this
configuration, follow these steps:

1. Launch EM.
3. getInStockItens retrieves a list of all the items the Chile - On Windows, select Start | All Programs | BASIS |

Company sells, including their quantity and warehouse
location, and appends the results to a string with the separator
string between each entry

BBj | Enterprise Manager
» On Mac in Finder, select Macintosh HD | Applications |
BASIS-Enterprise_Manager > >

BASIS International Advantage ® Number 1 ¢ Volume 13 ¢ 2009 www.basis.com

Language/Interpreter

* On UNIX/Linux distributions, type the
following at the shell prompt:
<BBj Installation>/bin/enterprisemanager

2. Log in to EM (User Name: admin Password: admin123
unless the person who installed BBj changed the
username and password)

3. Select "Web Service Configuration" from the left pane as
shown in Figure 6.

4. Select the CCOS Service and click [Edit Service] to
display a list of methods (see Figure 7).

Figure 7 fully defines the configuration for the CCOS Web
Service, including:

* The name of the service becomes read-only once the
service after its creation.

* The working directory is the directory where the
program files for the Web Service will reside.

In this case, we left the working directory blank because
the directory containing ServerSide_Legacy.src is already
in the PREFIX defined in config.min. We could have also
specified <BBj Installation>/demos/webservices as
our working directory. For a given Web Service, you can
have any number of program files with callable subroutines.
Those program files need to reside in the working directory
specified or in the PREFIX defined in the configuration file.

* The "Config File" field takes the location of the Web
Services' configuration file.

In this case, we specified config.min located in <BBj
Installation>/cfg. Any relative path specified here will
be relative to <BBj Installation>/cfg. The path must
otherwise be an absolute path.

* The "Namespace" field specifies the namespace for
your service; the package name for the client's service
and port classes will be the namespace name in all
lowercase. If this field is left blank, the package name
for the service and port classes will be "example".

* A list of methods for the CCOS Web Service appears
in the listbox at the bottom of this window. For easy
correlation, each method has the same name as a
subroutine in ServerSide_Legacy.src.Though itis
good practice to name the methods this way, it is not
required.

To see how the methods correlate to the subroutines in
ServerSide_Legacy.src, select the "placeOrder" method
and click [Edit Method]. The result appears in Figure 8
where the configuration for the subroutine "placeOrder" is
shown alongside the subroutine header for placeOrder in
ServerSide_Legacy.src.

The "Edit Method" window in Figure 8 is where the actual
method correlates to its subroutine. > >

8 Sarver Information
) Wer Admarntr ption
o By Proceisei
s JOBCIODBE Cornedtion
5] Triggers
== BEj File Sysbem
& Svebem Lo
son Corradtion Podl [Ind Party)
o My Ui

s Orline Copey Joba
A ek Serwioe Configur shan

& PLP Configuration

AddasnDaraillana

8 Sarver Information
) Wer Admarntr ption
o By Proceisei
s JOBCIODBE Cornedtion
5] Triggers
== BEj File Sysbem
& Svebem Lo
son Corradtion Podl [Ind Party)
o Moy LUisgs

& PLP Configuration

s Orline Copey Joba
A ek Serwioe Configur shan
AddsnDermala s

o By Proceisei
s JOBCIODBE Cornedtion
5] Triggers
== BEj File Sysbem

& Svebem Lo
son Corradtion Podl [Ind Party)
o My Ui

Serversde_Legary. oo placeleder
Rafurn e 4

BBfRrnG
BTt
BBfSg
BRRrng
BEfint

Bl acebrder |
enter custowerfamed o

Figure 8. The correlation of a BBx/BBj subroutine to a Web Service method

www.basis.com

BASIS International Advantage ® Number 1 ¢ Volume 13 « 2009 n

Language/Interpreter

» The "Name" field in this window is read-only after the
method has been created.

» The "Call" field takes a subroutine that the Web Service
will call in a similar fashion to the CALL verb in BBj. The format
of the subroutine is "<BBj program name>::<label>". The
program name should be just the base name of the BBj/
BBx program without a preceding path. The label name
should correspond to a subroutine’s label in that program file.

As mentioned earlier, it is possible to configure a Web
Service to use subroutines from not just one, but
several program files. The only requirement is that
those program files be in your working directory or
PREFIX.

The "Return Index" field is particularly important;
subroutines are required to always return a value and one
of the parameters must act as the return value.

Due to these requirements, a subroutine that a Web
Service uses must always have at least one parameter.
The Web Service will return the parameter specified

in the Return Index field as the return value of the
method. Return Index is the zero-based position of

the parameter in the parameter list. For example,
placeOrder takes five parameters. The first parameter
has an index of 0, and the last parameter has an index
of 4. The method uses orderNum% as the return value.
Therefore, our Return Index field is set to 4.

The listbox at the bottom of the window shows the five
parameters: customerName$, quantityStr$, itemNumStr$,
warehouseStr$, and orderNum%. While customerName$,
quantityStr$, itemNumStr$, and warehouseStr$ are all of
type BBjString, orderNum% is a BBjInt.

To add parameters to the listbox, press the [BBjString],
[BBjNumber], and [BBijInt] buttons. While BBj Web Services

is a work in progress, BBj 9.0 supports these three types but
future releases will support more types. In the meantime, we
concatenated our results in the ServerSide_Legacy.src with
a separator string rather than using arrays since BBj Web
Services does not support arrays in BBj 9.0. The residual
textbox and [Custom] button are windows into the future of BB;j
Web Services and are not currently supported.

The BBj Web Services server-side configuration is now complete.

Once all the Web Services methods correlate with each
subroutine in the ServerSide_Legacy. src file, we went back
to the first screen in Figure 6 and clicked [Publish Service].
Now that the Service is available for consumption, the WSDL,
which is the document that tells a client what methods it can
call on the Web Service, is available at http://localhost:8888/
webservice/CCOS?wsdl. This WSDL is exactly what we
needed to consume the Web Service in a Web Services client.

If you already familiar with Web Services, you
may find it helpful to access the WSDL with a
reference to its corresponding xsd file at
http://localhost:8888/webservice/CCOS?WSDL=1
and the XSD file at
http://localhost:8888/webservice/CCOS?xsd=1.

Consuming the Web Service

BASIS wrote the "Chile Company Web Service" demo client

in BBj with some help from tools available in Java. However,
the clients can be written in any language that supports Web
Services, such as Microsoft’s .NET platform (C# and Visual
Basic), Perl, and Java. To write a Web Service client, generate
client stubs, which are Java libraries for accessing a particular
Web Service. The client programs can use these stubs to
access the Web Service.

Generating client stubs is really easy using the tools available
in Java 6. Locate Java’s wsimport tool in the bin directory

of your JDK 6 install. To generate client stubs for the "Chile
Company Web Service" demo, we switched to a directory in
which we wanted to generate a couple of Java packages with
Java classes, and then entered the following at the command/
shell prompt:

This command uses the WSDL document to create two Java
packages, "ccos" and "bbjgenerated." BASIS generated

two packages found in the <BBj installation>/11ib/
ChileCompanyWebService. jar JAR file with this command.
The "ccos" package contains two classes known as the
service and port classes. In the case of CCOS, the service
class is called CCOSServiceService and the port class is
called CCOS. The bbjgenerated directory contains the classes
that correspond to the methods that BASIS configured in the
EM. These are message classes the port class uses, but not
directly by the client.

After generating the client stubs, add the Java classes to

the BBjServices classpath. In our case, the BBjIndex.jar
already includes the ChileCompanyWebService.jar. Other
than making use of the service and port classes, the "Chile
Company Web Service" demo client is a typical BBj program.
Access the Web Service in the client code in these four easy
steps:

1. Reference the generated classes. The USE statements
allow the program to access generated classes in the jar
located in the classpath.

declare example.CC0OS port!
port!=service!.getCCOSServicePort()

2. Instantiate the service class. The service class is one
of two classes in the package and has the name
<Service Name>+'"Service".

declare example.CCOSServiceService service!
servicel=new example.CCO0SServiceService()

3. Obtain the port from the service. The port is the other
class that is included in the ccos package and has the
same name as the service. Rather than instantiating this
class directly, call the get<service name>ServicePort()
method on your service object. > >

E BASIS International Advantage ® Number 17 ¢ Volume 13 ¢ 2009

www.basis.com

http://localhost:8888/webservice/CCOS?wsdl
http://localhost:8888/webservice/CCOS?wsdl
http://localhost:8888/webservice/CCOS?WSDL=1
http://localhost:8888/webservice/CCOS?xsd=1

Language/Interpreter

4. Call any of the methods defined in EM on the port object once you obtain the
port object. Since placeOrder was defined in Figure 8 as taking four BBjStrings,
you will need to pass four string values to the method. Configuration in EM defines
this method as returning a BBjlnteger, which the following statement assigns to
orderNum%.

(nr"derh un®E=port!.placeOrder (customerName$,quantitystr$,itemNumStr$,warehousestr$,ordern unﬂ;‘D

How it all Connects

You have come full circle seeing a BBj Web Services client in action and the server-
side code that the service invokes, and how the client Web Services program can
connect to the Web Service. The "Chile Company Web Service" demo showed that
when the user clicks the [Place Order] button, the demo invoked port!.placeOrder(),
sending a placeOrder message to the Web Service configured in EM. This resulted
in a CALL to the subroutine ServerSideLegacy.src::placeOrder upon receiving the
"placeOrder" message. Web Services then executed the subroutine and passed
back orderNum% as the return value. Inside the demo client’s code, orderNum% was
assigned to that return value.

Summary

So now, when you are looking at the current weather update on your day planner
application, you will know just how BB;j provides a similar live data connection to

your sales force, inventory crew, customers, etc. BBj makes creating a Web Service

a breeze, saving days or even months of development time, otherwise needed to
distribute your current functionality over a network. Your users do not even need a LAN
or VPN connection to be connected to your company! M

www.basis.com BASIS International Advantage ® Number 1 ¢ Volume 13 « 2009 n

